Features of this unit

Measurement method

This unit is a multifunctional cyclocomputer, having a GPS and an acceleration sensor built-in, which can perform measurement by receiving only the GPS signal. It can also measure up to 4 types of data (Speed, Cadence, Heart rate and Power) by receiving the signal of sensors compatible with ANT+ communication standards.

* This product does not contain an ANT+ sensor. Purchase the optional or commercial ANT+ sensor in accordance with your intended use.

Recording and viewing the trip route

Position information from GPS is recorded with measurement data during measurement. The measurement data such as your route and altitude can be viewed as a trip on a map on the site, by loading them into the dedicated software application “CATEYE Sync™” on your PC, and then uploading to the special website “CATEYE Atlas™”. “CATEYE Atlas™” can be used as a database for your cycling life, where you can store the trips measured using this unit or CATEYE INOU, a trip recorder with camera.

Icons used in this manual

• This manual indicates computer button operations as shown below.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image" alt="Power Button" /></td>
<td>Press the <strong>POWER</strong> button</td>
</tr>
<tr>
<td><img src="image" alt="Mode Button" /></td>
<td>Press the <strong>MODE</strong> button for 2 seconds</td>
</tr>
<tr>
<td><img src="image" alt="Menu Button" /></td>
<td>Press the <strong>MENU</strong> button</td>
</tr>
</tbody>
</table>

* For explanatory purposes, in this manual red text/icons on the computer screen represent flashing items.

This device complies with Part 15 of the FCC Rules and Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

L'appareil est conforme à la réglementation FCC, section 15 et Industrie Canada RSS standard exempts de licence(s). Son utilisation est soumise à deux conditions :
1. L’appareil ne doit pas provoquer d’interférences nuisibles, et
2. L’appareil doit supporter les interférences reçues, y compris les interférences empêchant son fonctionnement correct.

Modifications

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by CatEye Co., Ltd. may void the user’s authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: Reorient or relocate the receiving antenna. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. Consult the dealer or an experienced radio/TV technician for help.

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada.
Proper use of the CatEye STEALTH 51

⚠️ Warning / Caution
- Do not concentrate on the computer while riding. Ride safely!
- Mount firmly the bracket on your bicycle, and check periodically that it is not loosened.
- Do not leave the computer in direct sunlight for a long period of time.
- Do not disassemble the computer.
- Do not drop the computer to avoid malfunction or damage.
- Be sure to tighten the dial of the FlexTight™ bracket by hand. Tightening it strongly using a tool, etc. may damage the screw thread.
- When cleaning the computer and bracket, do not use thinners, benzene, or alcohol.
- LCD screen may be distorted when viewed through polarized sunglass lenses.

ANT+ sensor (optional or commercial)
This unit can receive, measure and display the signal from the following 4 ANT+ sensors.
- Speed sensor
- Speed/cadence (ISC) sensor
- Cadence sensor
- Heart rate sensor
- Power sensor
* For each type of sensor, you can perform pairing with up to 2 sensors.
* We offer an optional speed/cadence sensor (ISC-11), and heart rate sensor (HR-11).
* You can view applicable sensors on our website.

Measurement using GPS and an ANT+ sensor capable of speed measurement
Speed can be calculated from the GPS signal if you do not have a sensor that is capable of speed measurement. When a speed signal is detected from a sensor, priority is given to the speed signal for measurement.
The differences between sensor measurement and GPS measurement are described below.

<table>
<thead>
<tr>
<th>Under measurement</th>
<th>Measurement using the GPS signal</th>
<th>Measurement using an ANT+ sensor capable of speed measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The unit may stop measurement or</td>
<td>Accurate measurement can be performed even in such locations or</td>
</tr>
<tr>
<td></td>
<td>may not display appropriate</td>
<td>environments where the GPS signal cannot be received.</td>
</tr>
<tr>
<td></td>
<td>measurements when the GPS signal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cannot be received due to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>locations or environments while</td>
<td></td>
</tr>
<tr>
<td></td>
<td>riding.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The measurement results may</td>
<td>Highly reliable measurement values can be obtained, since they</td>
</tr>
<tr>
<td></td>
<td>differ slightly from the actual</td>
<td>are based on wheel rotations.</td>
</tr>
<tr>
<td></td>
<td>value.</td>
<td></td>
</tr>
</tbody>
</table>

* For GPS, see “GPS” (page 3).

ANT+ communication standards
ANT+ is low-power-consumption digital communication standards using frequency of 2.4GHz. It practically prevents external noises and cross talks from interfering with measurement, and enables to record and store more reliable data than before. However, it suffers interference in the following places and/or environments, which may result in an incorrect measurement.
* Be careful especially while pairing (i.e., searching the sensor ID).
  - Near TVs, PCs, radios, motors, or in cars or trains.
  - Near railroad crossings, along railway tracks, around television transmitting stations and radar bases, etc.
  - When using together with other wireless devices, or some particular battery lights.
  - Under the Wi-Fi environment

Automatic recognition of the sensor ID
The ANT+ sensor has its own ID, and the computer measures in synchronization with the ID. 2 sensor IDs per sensor type can be registered into the computer. By pairing in advance, the sensor is automatically recognized while riding. It is not necessary to change the tire circumference manually, since the tire circumference is set for the ID of the sensor capable of speed measurement.
* The speed sensor or speed/cadence (ISC) sensor, whichever is recognized, is indicated by the speed sensor icon ((ls1), (ls2)) on the display.
Procedure of automatic recognition
The computer automatically recognizes the sensor ID according to the following procedure.

1. Signals from each sensor (speed, speed/cadence, cadence, heart rate, and power) are searched at the time when the GPS search screen displayed when the power is turned on, or the standby screen is changed to the measurement screen.

2. Among the pairing-performed IDs of each sensor, the sensor with the strongest signal is received. The sensor signal icon corresponding to the received sensor appears on the display, and measurement is started. Each sensor is displayed as follows.

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed sensor</td>
<td>S (Flash)</td>
</tr>
<tr>
<td>Speed/cadence (ISC) sensor</td>
<td>S / C (Flash simultaneously)</td>
</tr>
<tr>
<td>Cadence sensor</td>
<td>C (Flash)</td>
</tr>
<tr>
<td>Heart rate sensor</td>
<td>H (Flash)</td>
</tr>
<tr>
<td>Power sensor</td>
<td>P (Flash)</td>
</tr>
</tbody>
</table>

Caution: Any sensor that is not sending the sensor signal at this time cannot be recognized. Each sensor sends the sensor signal in response to the following operations.

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed sensor</td>
<td>Move the magnet close to the sensor zone (at a distance of less than 3 mm)</td>
</tr>
<tr>
<td>Speed/cadence (ISC) sensor</td>
<td></td>
</tr>
<tr>
<td>* When using the CATEYE speed/cadence sensor (ISC-11), select ISC to perform pairing.</td>
<td></td>
</tr>
<tr>
<td>Cadence sensor</td>
<td></td>
</tr>
<tr>
<td>Heart rate sensor</td>
<td>Wear the heart rate sensor</td>
</tr>
<tr>
<td>Power sensor</td>
<td>Ride the bicycle lightly</td>
</tr>
</tbody>
</table>

GPS
GPS (Global Positioning System) is a system to identify the current position on the earth by receiving highly precise positional information sent from a satellite.

Receiving the GPS signal
- It may take several minutes to acquire the GPS signal after turning on the computer.
- While searching the GPS signal, we recommend that you do not move around until receiving the GPS signal. It may take more time to receive the GPS signal if you move around while searching the GPS signal.
- Receiving the GPS signal becomes easier under such conditions that the sky is open and the prospect for the satellites is good.

Where the GPS signal cannot be received
The unit may stop measurement or may not display appropriate measurements when the GPS signal cannot be received in the following locations or environments.
- In a tunnel, underground and building, between high-rise buildings, under an elevated structure and arcade, etc.
- In bad weather (snow, rain, etc.)
- Near a high-voltage line or a mobile telephone relay station.
- When the computer display does not face to the sky.
- The measurement results may differ slightly from the actual values, when the speed is calculated based on the GPS signal.

GPS
GPS (Global Positioning System) is a system to identify the current position on the earth by receiving highly precise positional information sent from a satellite.

Receiving the GPS signal
- It may take several minutes to acquire the GPS signal after turning on the computer.
- While searching the GPS signal, we recommend that you do not move around until receiving the GPS signal. It may take more time to receive the GPS signal if you move around while searching the GPS signal.
- Receiving the GPS signal becomes easier under such conditions that the sky is open and the prospect for the satellites is good.

Where the GPS signal cannot be received
The unit may stop measurement or may not display appropriate measurements when the GPS signal cannot be received in the following locations or environments.
- In a tunnel, underground and building, between high-rise buildings, under an elevated structure and arcade, etc.
- In bad weather (snow, rain, etc.)
- Near a high-voltage line or a mobile telephone relay station.
- When the computer display does not face to the sky.
- The measurement results may differ slightly from the actual values, when the speed is calculated based on the GPS signal.
Battery

Follow these instructions to maximize the lithium-ion battery performance.

**Recharge the battery for first time use or after long period of storage**

The voltage of the battery may drop during a long period of storage due to standby current. Always fully charge the battery before use.

**Cautions on recharging**

- Charge the battery at ambient temperature between 41°F to 104°F (5°C to 40°C).
- Be sure to unplug the USB plug after charging is completed.
- Clean the USB plugs before charging.
- Do not apply vibration during charging.
- When the connected PC is in sleep state, the battery cannot be charged.

**Cautions in use**

- Charging, discharging and storing at high temperature will damage the battery. Do not leave the battery in a car or near a heater.
- When the lighting time decreases significantly even though it is charged correctly, the rechargeable battery has reached the end of its usable life due to deterioration. For details, see "How to dispose the computer" (page 43).

**Cautions on storage**

Do not store the Li-Ion battery after a full charge. Cool and dry storage is recommended. For a long period storage, it is important to charge the battery 10 minutes every 6 months.

**Cautions for dispose**

Remove the rechargeable battery inside, before disposing the computer. For details, see "How to dispose the computer" (page 43).

---

Description of computer and its parts

**Computer**

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(POWER) button</td>
<td>Turns the power on and off and starts and stops measurement.</td>
</tr>
<tr>
<td>AC button</td>
<td>Used for formatting and restarting operations.</td>
</tr>
<tr>
<td>MENU button</td>
<td>Switches between menu screens and confirms settings.</td>
</tr>
<tr>
<td>MODE button</td>
<td>Switches the selected function and setting items.</td>
</tr>
</tbody>
</table>

**Accessories**

- Bracket band
- Bracket
- Bracket rubber pad
- Dial
- Cradle
- Quick start yellow card
Screen display

Icon Description

Battery icon
Displays the remaining battery capacity in 5 levels.
* For information on how to charge the battery, see “How to turn on/off the power / how to charge the battery” (page 7).

- (Light up) Remaining battery capacity is large
- Remaining battery capacity is small
- (Flash) Remaining battery capacity is nearly zero. In such case, the computer turns off the power automatically. Charge the battery as soon as possible.

Sensor signal icon
Flashes when the ANT+ sensor signal is received.
S (Flash) *1 When the speed signal is received
C (Flash) *1 When the cadence signal is received
H (Flash) When the heart rate signal is received
P (Flash) When the power signal is received
*1: When the signal from the speed/cadence (ISC) sensor is received, S and C flash simultaneously.

Pace arrow
Indicates if the current speed is faster or slower than the average speed.
( Faster, Slower)

GPS signal received icon
Indicates the GPS signal receiving status
( Light up) GPS signal is strong
GPS signal is weak

GPS signal not received icon
Flashes when GPS signal cannot be received. In such status, measurement cannot be performed.
* When such status lasts for 10 minutes, the computer turns off the power automatically. (Auto power off)

Speed unit
Flashes during measurement.

Speed sensor icon
Indicates the speed sensor or speed/cadence (ISC) sensor being received.
* Except for speed signal from power sensor.

Power unit

Tire circumference icon
Lights up when the tire circumference is entered.

Clock icon
Lights up when the clock is displayed.

Daylight saving time icon
* For information on how to set the daylight saving time, see “Clock setting” (when using CATEYE Sync™: page 30, when using the computer alone: page 33).
How to install the unit on your bicycle

Attach the bracket to the stem or handlebar
The FlexTight™ bracket can be attached to either the stem or the handlebar, depending on how the bracket fits into the bracket band.

⚠️ Caution: Be sure to tighten the dial of the FlexTight™ bracket by hand. Tightening it strongly using a tool, etc. may damage the screw thread.

When attaching the FlexTight™ bracket to the stem

![Diagram of attaching to the stem]

- Bracket band
- Bracket rubber pad
- Stem
- Dial

When attaching the FlexTight™ bracket to the handlebar

* To receive GPS signal effectively, adjust the direction of the bracket so that the computer display faces to the sky.

![Diagram of attaching to the handlebar]

- Bracket band
- Bracket rubber pad
- Handlebar
- Dial

Remove/Install the computer

⚠️ Caution: When removing, hold the unit to prevent it from falling.

Cut the excess length of the band using scissors.

⚠️ Caution: Round off the cut edge of the bracket strap to prevent injury.

* To mount the bracket to an aero-shaped handlebar or larger stem, use the optional nylon ties bracket.

When you have the ANT+ sensor

Mount the sensor according to the instruction manual of each sensor.

* For information on how to install the optional speed/cadence sensor (ISC-11), see “How to install the speed/cadence sensor (ISC-11)” (page 44).

* For information on how to wear the optional heart rate sensor (HR-11), see “How to install the heart rate sensor (HR-11)” (page 45).
How to turn on/off the power / how to charge the battery

Power ON/OFF
Press and hold the button on the back of the computer for 2 seconds.
* Set up the computer when you turn on the power for the first time. For details, see “Setting up the computer” (on the right of this page).
* When the remaining battery capacity is small, charge it according to the following instructions.

How to charge

1 Set the computer to the cradle

Caution: Do not set wet computer to the cradle, for example after ride in the rain. It may cause short circuit and damage the computer or the data.

2 Insert the USB plug in your PC or a commercial USB battery charger

Once charging is started, only (battery icon) is displayed.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animation</td>
<td>Charging</td>
</tr>
<tr>
<td>Light up</td>
<td>Charging is completed</td>
</tr>
</tbody>
</table>

* When the computer is connected to your PC, the battery cannot be charged with the PC in sleep state.
* With USB1.0, it takes time to charge.
* The battery charges to about 80% after approximately 90 minutes.
* The standard charging time may change according to the environment for use.
* The computer can be used for 10 hours on a full charge. (Due to standby current, usage time will become shorter as time progresses after charging.)

3 Remove the computer after charging is completed

Disconnect the USB plug from your PC or a USB battery charger, and then remove the computer from the cradle.
* To remove the computer, press it out by hand while holding the cradle.

Setting up the computer

Perform the following formatting operation, when you use the unit for the first time or restore the unit to the condition before shipment.

Caution: All data are deleted, and the computer is reset to the factory default.

* Complete setting up the computer without modification, even if you make a mistake in entering or fail in pairing (*1) with any sensor while setting up the computer. You can change the setting later, from the dedicated application “CATEYE Sync™” or from the menu screen of the computer. For details, see “Changing the computer configuration” (page 30).
*1: Pairing can be performed only from the menu screen of the computer. For details, see “Pairing the sensor” on the menu screen (page 36).

1 Format (initialize)

Press the button on the back of the computer and the AC button simultaneously. Release the button when a test pattern is displayed on the screen.

2 Select the speed unit

Select “km/h” or “m/h”.

Click the button, then a browser will open and a video will be played back.

Watch video (YouTube)
Pairing (Searching the sensor ID)

When you do not have the ANT+ sensor
“Pairing” is not required. Press the MENU button 5 times to jump to Step 5 “Select the time zone” (page 11).

When you have the ANT+ sensor
In order for the computer to recognize each sensor, it is necessary to register the sensor ID of each sensor (pairing). Perform pairing of the computer with your ANT+ sensor according to the following procedure.

This unit has 2 different methods for pairing.

<table>
<thead>
<tr>
<th>How to search the sensor ID</th>
<th>Description</th>
</tr>
</thead>
</table>
| Automatic search            | The computer completes pairing by receiving the signal sent from the sensor.  
|                             | * Generally, use this method for pairing. |
| Manual ID number entry      | When the sensor ID number is known, you can perform pairing by entering the number.  
|                             | * Use this method for pairing, when there are two or more ANT+ sensors, such as at a race site, and automatic search cannot be done. |

* While setting up the computer, sensor pairing is performed in the order shown in the figure. Complete setting up of the computer, even if you fail or skip pairing. You can change the setting later. For details, see “Pairing the sensor” on the menu screen (page 36).

* By default, you can perform pairing with either “SP:1” or “ISC:1”.
  * When you perform pairing with “SP:1”, the display of “ISC:1” (speed/cadence sensor) is skipped.
  * When you perform pairing with “ISC:1” (speed/cadence sensor), the display of “CD:1” (cadence sensor) is skipped.
### Pairing is started

#### In the case of automatic search

Press and hold the **MODE** button, then the lower display will be changed and automatic search will be started.

---

Automatic search is started

* When another ANT+ sensor is nearby, send the sensor signal of the sensor to be searched, and then press and hold the **MODE** button. It can be easier to pair with the sensor you want.

Send the sensor signal with the automatic search screen displayed.

* Note the ID number for your convenience, which is specific to the sensor.

* Each sensor sends the sensor signal in response to the following operations.

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SP</strong> Speed sensor</td>
<td>Speed/cadence sensor</td>
</tr>
</tbody>
</table>
| ISC | Speed/cadence sensor
  * When using the CAT-EYE speed/cadence sensor (ISC-11), select [ISC] to perform paring.

  Move the magnet close to the sensor zone (at a distance of less than 3 mm)

| CD | Cadence sensor |
| HR | Heart rate sensor |
| PW | Power sensor |

---

* The computer enters the search mode for 5 minutes after automatic search is started. Send the sensor signal in this period.

* Pressing and holding the **MODE** button in the search mode cancels automatic search. It is canceled automatically when the sensor signal cannot be received in the search mode.

---

#### In the case of manual ID number entry

Press and hold the **MODE** button to start automatic search, and then press the **MODE** button within 3 seconds. The display will be changed to the ID number entry screen.

---

Automatic search is started

* Note that it will enter into automatic search when a time of 3 seconds or more elapses.

---

Pressing the **MODE** button changes the value, and pressing and holding the **MODE** button moves to the next digit.

**Setting range:** 00001 – 65535

---

Increase the value

Move digits (Press & hold)

---

Go to Step 3.
Check the ID number, and then press the MENU button.
Sensor pairing is completed.

Perform pairing for other sensors with the same procedure.

Enter the tire circumference

When you skip pairing with the ANT+ sensor capable of speed measurement
Setting in “Entering the tire circumference” is skipped.
Go to Step 5 “Select the time zone” (page 11).

When you have performed pairing with the ANT+ sensor capable of speed measurement
Enter the tire circumference (outer perimeter of tire) on the side where the sensor is mounted, in mm, according to the following procedure.

Pressing the MODE button changes the value, and pressing and holding the MODE button moves to the next digit.
Setting range: 0100 - 3999 mm

Tire circumference
You can find the tire circumference (L) of your tire size in the chart below, or actually measure the tire circumference (L) of your bicycle.

How to measure the tire circumference (L)
For the most accurate measurement, do a wheel roll out. With the tires under proper pressure, place the valve stem at the bottom. Mark the spot on the floor and with the rider’s weight on the bike, roll exactly one wheel revolution in a straight line (until the valve comes around again to the bottom). Mark where the valve stem is and measure the distance.

* Measure the tire to which the sensor is installed.

Tire circumference reference table
* Generally, the tire size or ETRTO is indicated on the side of the tire.

<table>
<thead>
<tr>
<th>ETRTO</th>
<th>Tire size</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-540</td>
<td>24x1-1/8</td>
<td>1795</td>
</tr>
<tr>
<td>32-540</td>
<td>24x1-1/4</td>
<td>1905</td>
</tr>
<tr>
<td>25-559</td>
<td>26x1-5/8</td>
<td>1913</td>
</tr>
<tr>
<td>32-559</td>
<td>26x1.25</td>
<td>1950</td>
</tr>
<tr>
<td>37-559</td>
<td>26x1.40</td>
<td>2005</td>
</tr>
<tr>
<td>40-559</td>
<td>26x1.50</td>
<td>2010</td>
</tr>
<tr>
<td>47-559</td>
<td>26x1.75</td>
<td>2025</td>
</tr>
<tr>
<td>50-559</td>
<td>26x1.95</td>
<td>2050</td>
</tr>
<tr>
<td>54-559</td>
<td>26x2.10</td>
<td>2065</td>
</tr>
<tr>
<td>56-559</td>
<td>26x2.125</td>
<td>2070</td>
</tr>
<tr>
<td>58-559</td>
<td>26x2.35</td>
<td>2083</td>
</tr>
<tr>
<td>75-559</td>
<td>26x3.00</td>
<td>2170</td>
</tr>
<tr>
<td>28-590</td>
<td>26x1-1/8</td>
<td>2100</td>
</tr>
<tr>
<td>32-590</td>
<td>26x1-3/8</td>
<td>2105</td>
</tr>
<tr>
<td>37-590</td>
<td>26x1-1/2</td>
<td>2106</td>
</tr>
<tr>
<td>58-590</td>
<td>26x2.00</td>
<td>2130</td>
</tr>
<tr>
<td>50-590</td>
<td>26x2.10</td>
<td>2135</td>
</tr>
<tr>
<td>53-590</td>
<td>26x2.20</td>
<td>2139</td>
</tr>
<tr>
<td>56-590</td>
<td>26x2.25</td>
<td>2144</td>
</tr>
<tr>
<td>28-622</td>
<td>27x1-1/8</td>
<td>2180</td>
</tr>
<tr>
<td>32-622</td>
<td>27x1-3/8</td>
<td>2187</td>
</tr>
<tr>
<td>37-622</td>
<td>27x1-1/2</td>
<td>2189</td>
</tr>
<tr>
<td>47-622</td>
<td>27x1-3/8</td>
<td>2190</td>
</tr>
<tr>
<td>50-622</td>
<td>27x1.50</td>
<td>2195</td>
</tr>
<tr>
<td>54-622</td>
<td>27x1.75</td>
<td>2200</td>
</tr>
<tr>
<td>57-622</td>
<td>27x2.00</td>
<td>2205</td>
</tr>
<tr>
<td>60-622</td>
<td>27x2.10</td>
<td>2210</td>
</tr>
<tr>
<td>63-622</td>
<td>27x2.20</td>
<td>2215</td>
</tr>
<tr>
<td>67-622</td>
<td>27x2.40</td>
<td>2220</td>
</tr>
<tr>
<td>70-622</td>
<td>27x2.50</td>
<td>2225</td>
</tr>
<tr>
<td>75-622</td>
<td>27x2.75</td>
<td>2230</td>
</tr>
<tr>
<td>80-622</td>
<td>27x3.00</td>
<td>2235</td>
</tr>
<tr>
<td>85-622</td>
<td>27x3.50</td>
<td>2240</td>
</tr>
<tr>
<td>90-622</td>
<td>27x4.00</td>
<td>2245</td>
</tr>
<tr>
<td>95-622</td>
<td>27x4.50</td>
<td>2250</td>
</tr>
</tbody>
</table>

* Determining the tire circumference, see “Tire circumference” (on the right of this page).
5 Select the time zone
In reference to the following “Time zone list”, select the code for the city nearest from your current location.

Switch the display (Press & hold)

<table>
<thead>
<tr>
<th>City code</th>
<th>City name</th>
<th>Time difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LON</td>
<td>London</td>
<td>0</td>
</tr>
<tr>
<td>PAR</td>
<td>Paris</td>
<td>+1</td>
</tr>
<tr>
<td>ATH</td>
<td>Athens</td>
<td>+2</td>
</tr>
<tr>
<td>MOW</td>
<td>Moscow</td>
<td>+3</td>
</tr>
<tr>
<td>THR</td>
<td>Tehran</td>
<td>+3.5</td>
</tr>
<tr>
<td>DXB</td>
<td>Dubai</td>
<td>+4</td>
</tr>
<tr>
<td>KBL</td>
<td>Kabul</td>
<td>+4.5</td>
</tr>
<tr>
<td>KHI</td>
<td>Karachi</td>
<td>+5</td>
</tr>
<tr>
<td>DEL</td>
<td>Delhi</td>
<td>+5.5</td>
</tr>
<tr>
<td>DAC</td>
<td>Dhaka</td>
<td>+6</td>
</tr>
<tr>
<td>RNG</td>
<td>Yangon</td>
<td>+6.5</td>
</tr>
<tr>
<td>BKK</td>
<td>Bangkok</td>
<td>+7</td>
</tr>
<tr>
<td>HKG</td>
<td>Hong Kong</td>
<td>+8</td>
</tr>
<tr>
<td>TYO</td>
<td>Tokyo</td>
<td>+9</td>
</tr>
</tbody>
</table>

Time zone list
Select the daylight saving time
You can set the daylight saving time when you are on Daylight Saving Time. Select ON or OFF.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Moves the clock 1 hour ahead</td>
</tr>
<tr>
<td>OFF</td>
<td>Displays in regular clock</td>
</tr>
</tbody>
</table>

Register the setting (Press & hold) 

* Change ON/OFF according to the period of daylight saving time.

Select the clock display format
Select the display format of “12h” (12 hours display) or “24h” (24 hours display).

Display format

* Date and clock are acquired from GPS signal; therefore, it is not necessary to enter them.

Press the MENU button to complete setting
Setting up is completed, and the computer changes to the GPS search screen.

Complete setting up (Back)

Now, setting up the computer is completed. For information on how to use the computer, see “Screen flow” (page 13).
**Screen flow**

This unit has three screens: a GPS search screen, a measurement screen, and a standby screen. These screens are displayed alternatively according to GPS signal and/or speed signal reception status and bicycle movement. This section describes the flow of the screen after the power is turned on until measurement is started.

---

**GPS search screen (when the power is turned on)**

When the power is turned on, the GPS search screen will appear, and the unit will start searching for GPS. Depending on whether or not the GPS signal and/or speed signal is received, the behavior of the unit changes as described below.

<table>
<thead>
<tr>
<th>Reception status</th>
<th>Unit behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS signal or speed signal received</td>
<td>The unit switches to the measurement screen. Depending on the reception status, the GPS signal received icon (GPS) or the speed signal icon (S) is displayed.</td>
</tr>
<tr>
<td>GPS signal and/or speed signal not received</td>
<td>Pressing the MODE button switches to the measurement screen even if neither signal is received.</td>
</tr>
</tbody>
</table>

* It may take several minutes for the signal to be received depending on reception conditions.

---

**Measurement screen**

This is the basic screen of this unit. The measurement screen has the states described below.

<table>
<thead>
<tr>
<th>Middle display</th>
<th>GPS signal</th>
<th>Speed signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP (flash)</td>
<td>(on)</td>
<td>(off)</td>
<td>In this state, measurement is not possible even if you ride; it is only possible to check measurement data and perform a resetting operation.</td>
</tr>
<tr>
<td>STOP (on)</td>
<td>(on)</td>
<td>(off)</td>
<td>* There is no signal for speed measurement. If no buttons are pressed for 10 minutes, the unit automatically turns off. (Auto power off)</td>
</tr>
<tr>
<td>STOP (on)</td>
<td>(off)</td>
<td>(on)</td>
<td>Measurement is stopped while STOP is displayed. Pressing the (on) button starts or pauses measurement (STOP appears).</td>
</tr>
</tbody>
</table>

* When GPS signal or speed signal is not received, measurement will not start even if the (on) button is pressed and GO is displayed.
In this state, the unit uses the speed signal for measurement. It cannot display altitude acquired from the GPS signal and cannot record route information.

* Altitude are displayed and route information can be recorded from the time the GPS signal is received.

In this state, the unit uses the GPS signal for measurement, displays altitude, and allows route information to be recorded.

* If the GPS signal is lost while riding, the GPS signal not received icon ( ) will flash and the unit will stop measurement. Measurement will resume when the GPS signal is received again.

In this state, the unit give priority to the speed signal for measurement. It uses the GPS signal to display altitude, and record route information.

* For information on how to start/stop measurement, view the measurement data, and about resetting operation, see “Functions available on the measurement screen” (page 16).

* When the unit is on the measurement screen, if there is no button operation for 10 minutes while the GPS signal and/or the ANT+ sensor signal is not received, the unit automatically turns off. (Auto power off)

GPS signal may not be received, thus the unit may stop measurement or may not display appropriate measurements in the following locations or environments.

- In a tunnel, underground and building, between high-rise buildings, under an elevated structure and arcade, etc.
- In bad weather (snow, rain, etc.)
- Near a high-voltage line or a mobile telephone relay station.
- When the computer display does not face to the sky.
Standby screen

When the unit is on the measurement screen, if there is no bicycle movement or button operation for 10 minutes while the GPS signal or the speed signal is being received, the unit automatically switches to the standby screen. Riding again returns to the measurement screen.

* The unit turns off the power automatically in 50 minutes with the standby screen displayed. (Auto power off)

* When the GPS signal cannot be received with the standby screen displayed, the GPS signal not received icon (GPS) flashes. When the speed signal cannot be received, even riding again does not return to the measurement screen.

* When GPS signal or speed signal is not received, measurement will not start even if the button is pressed and GO is displayed.
Functions available on the measurement screen

Starting/Stopping measurement

This unit is a cyclocomputer, having a GPS and an ANT+ signal receiver built-in.

⚠️ Caution: The measurements below require an environment in which GPS signals can be received.
- Displaying altitude and recording route information
- Measuring without an ANT+ sensor

* For details regarding each screen, see “Screen flow” (page 13).

1 Press and hold the button for 2 seconds

The unit turns on and the GPS search screen appears. Wait several minutes until the GPS signal is received.

When the GPS signal and/or speed signal is received, the unit switches from the GPS search screen to the measurement screen.

2 Check that the GPS signal received icon \( \star \) turns on, and press the \( \bigcirc \) button

STOP changes to GO on the measurement screen, and measurement starts.

* When using an ANT+ sensor capable of speed measurement, measurement is possible even when the GPS signal not received icon \( \star \) is on, but altitude acquired from the GPS signal cannot be displayed and route information cannot be recorded. Altitude are displayed and route information can be recorded from the time the GPS signal is received.

3 Start riding

During measurement, measurement starts and stops automatically in sync with the movement of the bicycle.

* During measurement the measurement unit flashes.

* The speed signal icon \( \star \) flashes while the speed signal is received.

4 Press the \( \bigcirc \) button to stop measurement

STOP appears on the measurement screen, and measurement stops.

Once measurement stops, press and hold the MODE button to reset the measurement data to 0 (resetting operation) and generate trip data up to that time.

* Data from when measurement starts to the reset operation is recorded as a single trip, regardless of whether the unit is turned on or off. To continue measurement, turn the power off without performing a resetting operation. For details, see “Resetting the measurement data and generating the trip data” (page 18).

* For information on uploading trip data, see “Uploading trip data” (page 22).

5 Press and hold the \( \bigcirc \) button for 2 seconds

The unit turns off.

* If the unit is turned off without stopping measurement, it will start up in measurement mode when it is turned back on.

GPS signal may not be received, thus the unit may stop measurement or may not display appropriate measurements in the following locations or environments.
- In a tunnel, underground and building, between high-rise buildings, under an elevated structure and arcade, etc.
- In bad weather (snow, rain, etc.)
- Near a high-voltage line or a mobile telephone relay station.
- When the computer display does not face to the sky.
Switching computer function

Pressing the MODE button switches the measurement data in the lower display, in the order shown in the figure.

* Unnecessary functions can be hidden.

For details, see “Setting function display” (when using CATEYE Sync™, page 30, when using the computer alone: page 38).

---

### Tm
**Elapsed time**
- *0:00’ 00” – 9:59’ 59”*

### Dst
**Trip distance**
- *0.00 – 999.99 km [mile]*

### Dst2
**Trip distance-2**
- *0.00 – 999.99 / 1000.0 – 9999.9 km [mile]*

### Clock
**0:00 – 23:59**
- [AM 1:00 – PM 12:59]

### Odo
**Total distance**
- *0.0 – 9999.9 / 10000 – 99999 km [mile]*

### ALT
**Altitude**
- *

### MAX
**Maximum speed**
- *

### Power balance
When using separate left and right power sensors, power balance screen is also displayed.

- *Left 0 – 100%
- Right 0 – 100%*

---

### Average/maximum values

- **If heart rate/cadence sensor is paired, the unit displays the corresponding average and maximum values.**

- **When the power signal is received, the display alternates between AV icon and average power value, and MAX icon and maximum power value.**

---

*1: If heart rate/cadence sensor is not paired, related data is not displayed.
*2: The average value displays .E instead of the measurement value and measurement is not possible when Tm exceeds approximately 27 hours or Dst exceeds 999.99km. Reset the data.
**Backlight**

When using it during night-time, the backlight always lights up.

**Example: Setting of the night-time: 7:00 PM to 6:00 AM**

<table>
<thead>
<tr>
<th>PM 6:59</th>
<th>PM 7:00 – AM 5:59</th>
<th>AM 6:00</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
</tbody>
</table>

A backlight is turned on automatically

* The night-time can be set to your needs.
* For details, see “Night-time setting” (when using CATEYE Sync™: page 30, when using the computer alone: page 38).
* As default, it is set to 6:00 PM to 7:00 AM.

---

**Resetting the measurement data and generating the trip data**

Holding down the MODE button with the measurement screen displayed resets the measurement data to 0 (resetting operation). All the measurement data up to that time are generated as trip data. You can view measurement results and store trip records, by uploading the trip data to the special website “CATEYE Atlas™” via the dedicated software application “CATEYE Sync™”.

* **A trip is continued unless the resetting operation is performed, even if the power is turned off during measurement.**
* **The trip distance-2 (Dst2) is not reset to 0, since it is to be reset separately. For details, see “Resetting the trip distance-2” below.**
* **The total distance (Odo) cannot be reset.**
* **For information on how to upload to the CATEYE Atlas™, see “Uploading the measurement data (trip data)” (page 22).**
* **The unit has a limited memory capacity. When the data volume exceeds the memory capacity, any new data can no longer be stored. For details, see “Record interval and capacity limit” (page 26).**

### Resetting the trip distance-2

Pressing and holding the MODE button with the trip distance-2 (Dst2) displayed resets only the trip distance-2 data to 0.

* **The trip distance-2 (Dst2) value cannot be saved as trip data.**
Power measurement

This measurement is possible when you have the ANT+ power sensor.

When the power signal is received, the middle display in the measurement screen changes to power.
* The clock display moves from the middle display to the lower display.
For details, see “Switching computer function” (page 17).

Power balance can be measured if you have separate left and right ANT+ power sensors.

When a signal is received from a separate left and right power sensor, power balance is added to the current functions.
* This function is skipped if the power sensor does not distinguish between left and right.
* When power is 0, the display shows “--”.

Calibration of the power sensor

Continuous use of the power sensor may cause a slight drift in unloaded condition. Calibrate it periodically to correct the drift. Especially for critical measurements, we recommend you perform calibration in advance.

* Read the instruction manual of the power sensor, and check the precautions for calibration before you start calibration. If you fail in calibration, accurate power measurement may not be performed.

1. Press and hold the MENU button for 4 seconds while measurement stops on the measurement screen

Caution: Be sure not to put a load on the power sensor accessories (crank, etc.) during calibration.

To the calibration screen (Press & hold for 4 sec.)

CALIB will flash on the display, and calibration will be started.

3 seconds later, calibration will be completed and the display will return to the measurement screen.

* It may be possible to measure current speed and cadence depending on your power sensor.

Power balance

When power signal

Without power signal

Clock or
Altitude

Current power
0 – 9999 watt

With power signal

Clock

Current power
0 – 9999 watt

Power balance

Left: 0 – 100%

Right: 0 – 100%
Setup of your PC

At first, access the special website CATEYE Atlas™ to register as a member. Then, install CATEYE Sync™ to your PC (Windows/Mac). You can upload the trip data measured with this unit to CATEYE Atlas™, STRAVA™, TrainingPeaks™ and others, or change the computer configuration using your PC.

⚠️ Caution: Use the PC with an Internet access environment to access CATEYE Atlas™ or download CATEYE Sync™.

Membership registration to CATEYE Atlas™
- You can use the same account when using CATEYE INOU and having registered membership.
- When uploading the trip data acquired with this unit only to STRAVA™ or TrainingPeaks™, membership registration of CATEYE Atlas™ is not required. Install CATEYE Sync™, and see “Uploading trip data” (page 22).

1 Access CATEYE Atlas™
Access the website “CATEYE Atlas™” from your browser (http://www.cateyeatlas.com).

2 Click on [Create account]
Register your temporary membership according to the instructions displayed on the screen.
Once you are registered, an e-mail is sent from CATEYE Atlas™. Access to the specified URL to register your formal membership.
* Membership registration is free of charge.
* Make a note of your e-mail address, password and birth date registered, and be sure to keep it.

3 Click on [Login here]

4 Enter your e-mail address and password, and then click on [Login]
Enter correctly your e-mail address and password registered to login.
* Go to “Installing CATEYE Sync™” (on the right of this page).

Installing CATEYE Sync™

Operating environment for CATEYE Sync™

<table>
<thead>
<tr>
<th>OS</th>
<th>Windows XP (32 bit), and Vista / 7 / 8 (32 bit / 64 bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* .NET Framework 3.5 is required.</td>
</tr>
<tr>
<td>Memory</td>
<td>Recommend environment for respective OS</td>
</tr>
<tr>
<td>HDD</td>
<td>Available capacity required: 64 MB or more</td>
</tr>
<tr>
<td>Browser</td>
<td>Internet Explorer 7 or later, Safari 4.0 or later, Firefox, and Google Chrome 5.0 or later</td>
</tr>
</tbody>
</table>

How to Install CATEYE Sync™

1 Click on [Download CATEYE Sync™ now]
Download the file according to the instructions displayed on the screen.

2 Double click on the execution file downloaded

<table>
<thead>
<tr>
<th>OS</th>
<th>Execution file</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Windows</td>
<td>[setup.exe]</td>
</tr>
<tr>
<td>For Mac</td>
<td>[CATEYESyncSetUp.pkg]</td>
</tr>
</tbody>
</table>

* Administrator authority is required to run the program on Windows Vista / 7 / 8.

3 Perform an installation according to the instructions displayed on the screen
Once installation is completed, CATEYE Sync™ will start.
* Go to “Setting CATEYE Sync™” (page 21).
Setting CATEYE Sync™
After installing CATEYE Sync™, configure the login setting for CATEYE Atlas™.
* When uploading the trip data only to STRAVA™ or TrainingPeaks™, the following setting is not required.

1 Start CATEYE Sync™
Double-click on the shortcut [CATEYE Sync™] to start CATEYE Sync™.

2 Click on [Settings]
The setting screen appears.

3 Click on [Account setting] and enter your e-mail address and password
Enter correctly the e-mail address and password you registered at CATEYE Atlas™.

4 Click on [Apply]
Login setting for CATEYE Sync™ is completed.
Now, setup of your PC is completed.
* For information on how to upload the trip data, see “Uploading the measurement data (trip data)” (page 22).
* With CATEYE Sync™, you can synchronize the settings configured in “Setting up the computer” (page 7) with the computer (except for paring). For details, see “Changing the computer configuration” (page 30).
* When using CATEYE INOU, click on [INOU] to start INOU Sync. When you use CATEYE INOU for the first time, download CATEYE Sync™ INOU from CATEYE Atlas™ to install it.
Uploading the measurement data (trip data)

The trip data generated by the resetting operation can be uploaded to the special website CATEYE Atlas™ or other services (STRAVA™ and others) in the following procedure.

* It is recommended to download trip data to your PC frequently. If too much data is accumulated, it may take a long time to download or cause a download error.

Uploading trip data

Save the trip data in the computer to your PC, and upload desired trip data to CATEYE Atlas™, STRAVA™, or TrainingPeaks™.

* The trip data without the resetting operation cannot be recognized with CATEYE Sync™. Perform the resetting operation of the computer before setting to the cradle.

Watch video (YouTube)

Click the button, then a browser will open and a video will be played back.

4 Check that “STEALTH” is selected under Device, and click [Download All Activities & View Data List]

The trip data is downloaded from the computer to your PC, and the data list screen appears.

* Trip data successfully downloaded to your PC is deleted from the computer.
* Data under measurement that has not been reset cannot be read.

1 Set the computer to the cradle

⚠️ Caution:

Do not set wet computer to the cradle, for example after ride in the rain. It may cause short circuit and damage the computer or the data.

2 Insert the USB plug into your PC

Only ➡️ (battery icon) is displayed on the screen.

3 Start CATEYE Sync™

Double-click on the shortcut [CATEYE Sync™] to start CATEYE Sync™.

Perform the resetting operation of the computer before setting to the cradle.
Check that the trip data you want to upload has been selected, and click the desired upload button
Transferred trip data is displayed in the data list with a check mark.

The loaded trip data includes trips with a distance and time of 0. These trips are data created by the resetting operation before measurement.
* For details, see “Starting/Stopping measurement” (page 15).
Clear the check box for any unnecessary trip data, and then click the upload button for the service site you want to upload the data to.

* You must have an account with the relevant site to upload data to STRAVA™ or TrainingPeaks™. Site authentication is required when uploading for the first time. After clicking the upload button, follow the on-screen instructions and enter the authentication code issued by the site.
* It may take time to upload depending on the trip data size and line condition.

When the upload is complete, the sites to which the data was uploaded are indicated in the “Status” column and links to the trip are displayed in the adjacent column.

* Clicking the link launches your browser and displays the uploaded trip.

Syncing all activities
Clicking [Sync All Activities] lets you download trip data to your PC and upload trips to service sites with the click of a single button. Trip data is uploaded to the previous service site you used.

* You can check the upload destination by the color of the button. (Green: CATEYE Atlas™, Orange: STRAVA™, Blue: TrainingPeaks™)
* To upload specific trip data only or upload trip data to a service site other than the last one used, upload using the [Download All Activities & View Data List] button. For details, see Step 6 of “Uploading trip data” (on the left of this page).
Exporting the trip data
You can export the trip data saved in CATEYE Sync™, and create a file.

1 Check any trip data on the data list screen, and then click on [Export]
A dialog for selecting the file format appears.

* Selecting data for multiple trips lets you export several files at once.

2 Click on the file format for export

<table>
<thead>
<tr>
<th>File format</th>
<th>Description</th>
</tr>
</thead>
</table>
| CATEYESync (.ces) | A file that can be read into CATEYE Sync™
* This can be used when transferring the trip data in the past to a new PC when renewing your PC. |
| .gpx | A general-purpose GPS data file
* This can be used after reading into Google Earth™, etc. |
| .fit | A file that can be read into STRAVA™ and TrainingPeaks™ |

A window for selecting the destination to save appears.

3 Select the destination to save, and then click on [Open]
The file will be exported to the destination specified.
Importing the data of such as e-Train Data™ to CATEYE Sync™

The measurement data loaded into e-Train Data™ can be used with CATEYE Atlas™ and other services (STRAVA™ etc.) by importing it to CATEYE Sync™.

1 Export the measurement data from e-Train Data™, and prepare a file
   * For information on how to export e-Train Data™, see the instruction manual for e-Train Data™.

2 Click on [Import] on the top screen
   A window for selecting the file appears.

3 Select the file you want to load, and then click on [Open]
   The data list screen appears, and the selected file is added to the data list.

   * The CATEYE Sync file exported from another PC can also be loaded.
   * The CSV files not created with e-Train Data™ Ver.2 cannot be imported.

---

**Compatible files**

<table>
<thead>
<tr>
<th>File Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.etd</td>
</tr>
<tr>
<td>.csv</td>
</tr>
<tr>
<td>.ces</td>
</tr>
</tbody>
</table>
Trip data

Data contained in the trip data

Date and clock (date/time when the measurement started)

Elapsed time

Data recorded at the record interval specified
- Location information
- Trip distance
- Altitude
- Current speed
- Cadence (*1)
- Heart rate (*1)
- Power (*1)

*1: These are measured when using an ANT+ compatible sensor.

Record interval and capacity limit

This unit records data at the specified interval. The record interval can be selected from 1, 2 or 5 seconds according to your use (Default: 1 second). The maximum recording time and the maximum time for one trip depend on the selected record interval as follows.

<table>
<thead>
<tr>
<th>Record interval</th>
<th>Maximum recording time (total time of all trip data)</th>
<th>Maximum time for one trip</th>
<th>Maximum number of trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 second</td>
<td>35 hours</td>
<td>12 hours</td>
<td></td>
</tr>
<tr>
<td>2 seconds</td>
<td>70 hours</td>
<td>24 hours</td>
<td>250 trips</td>
</tr>
<tr>
<td>5 seconds</td>
<td>175 hours</td>
<td>60 hours</td>
<td></td>
</tr>
</tbody>
</table>

* The recording time and number of trips above are for reference only. These may be different according to the operating environment.
* For information on record interval settings, see “Setting the record interval” (when using CATEYE Sync™: page 30, when using the computer alone: page 38).
* When exceeding any of the conditions above, “MEM FULL” appears flashing on the screen, and no new data can be recorded. Transfer the trip data to CATEYE Sync™ to secure the storage volume of the computer. Only when exceeding the maximum time for one trip, the resetting operation (page 18) allows you to start the measurement as another trip.
Reviewing, editing and sharing the trip
(What you can do with CATEYE Atlas™)
You can share the trip with your friends and other users, by editing the trip information uploaded to CATEYE Atlas™.

1 **Access CATEYE Atlas™**
Access the website “CATEYE Atlas™” from your browser (http://www.cateyeatlas.com).

2 **Click on [Login here]**
* When you have not registered your membership, see “Membership registration to CATEYE Atlas™” (page 20).

3 **Enter your e-mail address and password, and then click on [Login]**
Enter correctly your e-mail address and password registered to login. The “My Page” appears.

* On My Page, you can view the trip and trip data in the past and set the target trip distance in a certain period of time.

4 **Click on the trip uploaded**
A map with the trip route with ride data shown.

* Clicking on MODE under the ride data changes the display items.

5 **Click on [Edit trip info] at the upper right of the map**
A screen for editing the trip information appears. Enter information of the trip, including the title, bicycle and memo.
6 Select the privacy setting
Select the privacy setting.
- Private: Can be viewed only with your account.
- Public: All users can view.
- Friends only: Only your friends can view.

7 Clicking on [Save this]
Now, editing the trip information is completed.

Deleting the GPS point
You can delete particular GPS points on the route.
1. Click on [Delete GPS point] from the trip information editing screen.
The trip route appears on the map.
2. Click on a start point for the route section you want to delete.
A section appears according to the cursor movement.
3. Click on an end point of the section, covering the route you want to delete.
A confirmation message appears.
4. Click on [Delete the GPS point selected].
The GPS points in the specified section are deleted.

Deleting the trip
You can delete the trip displayed.
1. Click on [Delete trip] on the trip information editing screen.
2. Click on [Delete].
* The CATEYE Sync™ trip data on your PC is not affected.
* The deleted trip can be restored by re-uploading from CATEYE Sync™.
Exporting to a GPX file

Export a general-purpose GPS data file from the trip. This can be used with other services, including Google Earth™.

1. Click on [GPX export] on the trip information editing screen. A confirmation message appears.

2. Click on [Export]. A GPX file is downloaded.
Changing the computer configuration

You can change the computer configuration in two ways.

- Changing the setting with CATEYE Sync™ (below on this page)
  You can change the configuration easily from your PC application, with the computer connected to your PC with the cradle.
  
  ![Warning]
  **Caution:** Pairing the ANT+ sensor cannot be performed with CATEYE Sync™. For information on how to perform, see “Pairing the sensor” (page 36).

- Changing the settings of the computer alone (page 33).
  This can be used when changing the setting with not using a PC.

Changing the setting with CATEYE Sync™

You can change the configuration easily from your PC application, with the computer connected to your PC with the cradle.

![Warning]
**Caution:** Pairing the ANT+ sensor cannot be performed with CATEYE Sync™. For information on how to perform, see “Pairing the sensor” (page 36).

You can change the computer configuration in two ways.

- Changing the setting with CATEYE Sync™ (below on this page)
  You can change the configuration easily from your PC application, with the computer connected to your PC with the cradle.
  
  ![Warning]
  **Caution:** Pairing the ANT+ sensor cannot be performed with CATEYE Sync™. For information on how to perform, see “Pairing the sensor” (page 36).

- Changing the settings of the computer alone (page 33).
  This can be used when changing the setting with not using a PC.

### Changing the setting with CATEYE Sync™

1. **Set the computer to the cradle**

   ![Warning]
   **Caution:** Do not set wet computer to the cradle, for example after ride in the rain. It may cause short circuit and damage the computer or the data.

2. **Insert the USB plug into your PC**

   Only ![Battery icon](image) (battery icon) is displayed on the computer screen.

3. **Start CATEYE Sync™**

   Double-click on the shortcut [CATEYE Sync™] to start CATEYE Sync™.
Click on [STEALTH] to change the settings

Before changing the settings, click on [Read] to load the settings of the computer.

Change the settings according to the following procedure.

<table>
<thead>
<tr>
<th>Setting items</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time zone</td>
<td>Select the city code nearest from your current location. * For details, see “Time zone list” (page 11).</td>
</tr>
<tr>
<td>Daylight saving time</td>
<td>Select whether to use the daylight saving time. • On : Moves the clock 1 hour ahead. • Off : Displays in regular clock.</td>
</tr>
<tr>
<td>Speed unit</td>
<td>Select the speed unit (km/h or m/h).</td>
</tr>
</tbody>
</table>

Delete the data recorded in the computer.

Read the current settings of the computer.

Delete the data recorded in the computer.

Read the current settings of the computer.

Set the time when the backlight lights up.
* Night Mode On : Enter the start time when the backlight lights up.
* Night Mode Off : Enter the end time when the backlight lights off.

(Example) When lighting up from 7:00 pm to 6:00 am
Night Mode On : 19
Night Mode Off : 6
* When you do not want to turn on the backlight throughout the day, set the same value for both “Night-time setting ON” and “Night-time setting OFF”.

Night-time setting

Assign the tire circumference for the sensor capable of speed measurement. (Setting range: 0100 to 3999 mm)
* ISC1 (ISC-1) : Speed/cadence sensor 1
* SPD1 (SP-1) : Speed sensor 1
* ISC2 (ISC-2) : Speed/cadence sensor 2
* SPD2 (SP-2) : Speed sensor 2
* As default, it is set to 2096.
* For the sensor without pairing, the tire circumference cannot be set even if it is entered.
* ISC2 and SPD2 are used when a computer is commonly used for two bicycles. For details, see “Pairing the sensor” (page 36).
* Enter the tire circumference for power sensors capable of transmitting a speed signal in SP-2.

Tire circumference

You can enter the start value of the total distance, and add the trip distance to it. (Setting range: 00000 to 99999)
* This can be used when you renew and/or reset the computer.
* Enter the total distance in integer number only.

Total distance

This setting is required if you have paired an ANT+ sensor capable of speed measurement.

Meal Table
7 Click on [Apply]

The changes are reflected to the computer. Remove the computer from the cradle. Now, changing the computer configuration is completed.

<table>
<thead>
<tr>
<th>Setting items</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Sampling interval** | Set the record interval of the measurement data. * The maximum recording time (total time of all trip data) and the maximum time for one trip depend on the interval selected.  
  • 1s (at intervals of 1 second) : 35 hours / 12 hours  
  • 2s (at intervals of 2 seconds) : 70 hours / 24 hours  
  • 5s (at intervals of 5 seconds) : 175 hours / 60 hours  |
| **Clock display format** | Select the display format of “12h” (12 hours display) or “24h” (24 hours display).  
  * Date and clock are acquired from GPS signal; therefore, it is not necessary to enter them.  |
| **Function display** | You can hide undesired functions. (Check mark: function displayed, No check mark: function hidden)  
  * Measurement is performed for hidden functions. When a hidden function is displayed again, its measurement results will be reflected.  |
| **Middle display** | Select the middle display of the measurement screen.  
  • Clock : Displays the clock.  
  • Altitude : Displays altitude.  
  * When the power signal is received, the middle display shows power regardless of the middle display setting.  |
Changing the settings of the computer alone

Pressing the **MENU** button with the measurement screen displayed changes to the menu screen. Various settings can be changed on the menu screen.

* After you change the setting, be sure to press the **MENU** button to register it.
* Leaving the menu screen without any operation for 1 minute returns to the measurement screen.

**Clock setting**

Change the settings of the time zone, daylight saving time, and the clock display format.

* With this unit, it is not necessary to set the clock/date, since they are synchronized after receiving GPS signal.

**Time zone list**

Select the code for the city nearest from your current location.

**Daylight saving time**

Select whether to use the daylight saving time.

- **ON**: Moves the clock 1 hour ahead
- **OFF**: Displays in regular clock

**Clock display format**

Select the display format of “12h” (12 hours display) or “24h” (24 hours display).

- **12h ↔ 24h**

**Changing the time zone (shortcut)**

When you travel back and forth between two regions, you can easily return the time zone to the original one.

* For details, see “Time zone list” (page 34)
Changing the time zone (shortcut)

Holding down the MODE button for 4 seconds with the menu top screen displayed returns the time zone to the previous one. Holding down it again returns to the original time zone.

Example: Change the time zone

<table>
<thead>
<tr>
<th>Current setting</th>
<th>Previous setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYC (New York)</td>
<td>TYO (Tokyo)</td>
</tr>
</tbody>
</table>

Register the setting

The time zone is changed from **NYC** (New York) to **TYO** (Tokyo) of the previous setting.

Change the time zone again

<table>
<thead>
<tr>
<th>Current setting</th>
<th>Setting before the change</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYO (Tokyo)</td>
<td>NYC (New York)</td>
</tr>
</tbody>
</table>

Register the setting

The time zone is changed from **TYO** (Tokyo) to **NYC** (New York) before the change.

* When you travel back and forth between two cities having different time zone, you can easily return it to the original time zone by performing the shortcut operation, even after changing the time zone in the second city.

* The time zone stored for the shortcut is the previous setting only.

<table>
<thead>
<tr>
<th>City code</th>
<th>City name</th>
<th>Time difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LON</td>
<td>London</td>
<td>0</td>
</tr>
<tr>
<td>PAR</td>
<td>Paris</td>
<td>+1</td>
</tr>
<tr>
<td>ATH</td>
<td>Athens</td>
<td>+2</td>
</tr>
<tr>
<td>MOW</td>
<td>Moscow</td>
<td>+3</td>
</tr>
<tr>
<td>THR</td>
<td>Tehran</td>
<td>+3.5</td>
</tr>
<tr>
<td>DXB</td>
<td>Dubai</td>
<td>+4</td>
</tr>
<tr>
<td>KBL</td>
<td>Kabul</td>
<td>+4.5</td>
</tr>
<tr>
<td>KHI</td>
<td>Karachi</td>
<td>+5</td>
</tr>
<tr>
<td>DEL</td>
<td>Delhi</td>
<td>+5.5</td>
</tr>
<tr>
<td>DAC</td>
<td>Dhaka</td>
<td>+6</td>
</tr>
<tr>
<td>RGN</td>
<td>Yangon</td>
<td>+6.5</td>
</tr>
<tr>
<td>BKK</td>
<td>Bangkok</td>
<td>+7</td>
</tr>
<tr>
<td>HKG</td>
<td>Hong Kong</td>
<td>+8</td>
</tr>
<tr>
<td>TYO</td>
<td>Tokyo</td>
<td>+9</td>
</tr>
</tbody>
</table>

* For details, refer to the map on page 11.

**Time zone list**

<table>
<thead>
<tr>
<th>City code</th>
<th>City name</th>
<th>Time difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRW</td>
<td>Darwin</td>
<td>+9.5</td>
</tr>
<tr>
<td>SYD</td>
<td>Sydney</td>
<td>+10</td>
</tr>
<tr>
<td>NOU</td>
<td>Noumea</td>
<td>+11</td>
</tr>
<tr>
<td>WLG</td>
<td>Wellington</td>
<td>+12</td>
</tr>
<tr>
<td>PPG</td>
<td>Pago Pago</td>
<td>-11</td>
</tr>
<tr>
<td>HNL</td>
<td>Honolulu</td>
<td>-10</td>
</tr>
<tr>
<td>ANC</td>
<td>Anchorage</td>
<td>-9</td>
</tr>
<tr>
<td>LAX</td>
<td>Los Angeles</td>
<td>-8</td>
</tr>
<tr>
<td>DEN</td>
<td>Denver</td>
<td>-7</td>
</tr>
<tr>
<td>CHI</td>
<td>Chicago</td>
<td>-6</td>
</tr>
<tr>
<td>NYC</td>
<td>New York</td>
<td>-5</td>
</tr>
<tr>
<td>CCS</td>
<td>Caracas</td>
<td>-4</td>
</tr>
<tr>
<td>RIO</td>
<td>Rio de Janeiro</td>
<td>-3</td>
</tr>
</tbody>
</table>
Setting the tire circumference

This setting is required if you have paired an ANT+ sensor capable of speed measurement.

Assign the tire circumference for the sensor capable of speed measurement.

Selecting the sensor
Select the sensor for which to set the tire circumference.

<table>
<thead>
<tr>
<th>MODE</th>
<th>ISC-1 (Speed/cadence sensor 1)</th>
<th>↓</th>
<th>SP-1 (Speed sensor 1)</th>
<th>↓</th>
<th>ISC-2 (Speed/cadence sensor 2)</th>
<th>↓</th>
<th>SP-2 (Speed sensor 2)</th>
</tr>
</thead>
</table>

* The sensor in use appears first.

* Enter the tire circumference for power sensors capable of transmitting a speed signal in SP-2.

* ISC-2 and SP-2 are used when a computer is used for two different bicycles. For details, see “Pairing the sensor” (page 36).

Entering the tire circumference

Setting range: 0100 - 3999 mm

Increase the value

Move digits (Press & hold)

To “Pairing the sensor” (page 36)

Tire circumference

You can find the tire circumference (L) of your tire size in the chart below, or actually measure the tire circumference (L) of your bicycle.

How to measure the tire circumference (L)

For the most accurate measurement, do a wheel roll out. With the tires under proper pressure, place the valve stem at the bottom. Mark the spot on the floor and with the rider’s weight on the bike, roll exactly one wheel revolution in a straight line (until the valve comes around again to the bottom). Mark where the valve stem is and measure the distance.

* Measure the tire to which the sensor is installed.

Tire circumference reference table

* Generally, the tire size or ETRTO is indicated on the side of the tire.

<table>
<thead>
<tr>
<th>ETRTO</th>
<th>Tire size</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47-203</td>
<td>12x1.75</td>
<td>935</td>
</tr>
<tr>
<td>54-203</td>
<td>12x1.95</td>
<td>940</td>
</tr>
<tr>
<td>40-254</td>
<td>14x1.50</td>
<td>1020</td>
</tr>
<tr>
<td>47-254</td>
<td>14x1.75</td>
<td>1055</td>
</tr>
<tr>
<td>40-305</td>
<td>15x1.75</td>
<td>1155</td>
</tr>
<tr>
<td>47-305</td>
<td>16x1.75</td>
<td>1195</td>
</tr>
<tr>
<td>54-305</td>
<td>16x2.00</td>
<td>1245</td>
</tr>
<tr>
<td>28-349</td>
<td>16x1-1/8</td>
<td>1290</td>
</tr>
<tr>
<td>37-349</td>
<td>16x1-3/8</td>
<td>1300</td>
</tr>
<tr>
<td>32-369</td>
<td>17x1-1/4(369)</td>
<td>1340</td>
</tr>
<tr>
<td>40-355</td>
<td>18x1.50</td>
<td>1340</td>
</tr>
<tr>
<td>47-355</td>
<td>18x1.75</td>
<td>1350</td>
</tr>
<tr>
<td>32-406</td>
<td>20x1.25</td>
<td>1450</td>
</tr>
<tr>
<td>35-406</td>
<td>20x1.35</td>
<td>1460</td>
</tr>
<tr>
<td>40-406</td>
<td>20x1.50</td>
<td>1490</td>
</tr>
<tr>
<td>47-406</td>
<td>20x1.75</td>
<td>1515</td>
</tr>
<tr>
<td>50-406</td>
<td>20x1.95</td>
<td>1555</td>
</tr>
<tr>
<td>28-451</td>
<td>20x1-1/8</td>
<td>1545</td>
</tr>
<tr>
<td>37-451</td>
<td>22x1-3/8</td>
<td>1615</td>
</tr>
<tr>
<td>37-501</td>
<td>22x1-3/8</td>
<td>1770</td>
</tr>
<tr>
<td>40-501</td>
<td>22x1-1/2</td>
<td>1785</td>
</tr>
<tr>
<td>47-507</td>
<td>24x1.75</td>
<td>1890</td>
</tr>
<tr>
<td>50-507</td>
<td>24x2.00</td>
<td>1925</td>
</tr>
<tr>
<td>54-507</td>
<td>24x2.125</td>
<td>1965</td>
</tr>
<tr>
<td>25-520</td>
<td>24x1(520)</td>
<td>1753</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETRTO</th>
<th>Tire size</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-540</td>
<td>24x1-1/8</td>
<td>1795</td>
</tr>
<tr>
<td>32-540</td>
<td>24x1-1/4</td>
<td>1905</td>
</tr>
<tr>
<td>25-559</td>
<td>26x1(559)</td>
<td>1915</td>
</tr>
<tr>
<td>26-559</td>
<td>26x1.25</td>
<td>1950</td>
</tr>
<tr>
<td>26-659</td>
<td>26x1.40</td>
<td>2010</td>
</tr>
<tr>
<td>26-659</td>
<td>26x1.50</td>
<td>2050</td>
</tr>
<tr>
<td>26-659</td>
<td>26x1.75</td>
<td>2095</td>
</tr>
<tr>
<td>26-659</td>
<td>26x2.00</td>
<td>2110</td>
</tr>
<tr>
<td>26-659</td>
<td>26x2.25</td>
<td>2170</td>
</tr>
<tr>
<td>26-659</td>
<td>26x2.50</td>
<td>2230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETRTO</th>
<th>Tire size</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-622</td>
<td>26x1-1/2</td>
<td>2088</td>
</tr>
<tr>
<td>35-622</td>
<td>26x1-1/4</td>
<td>2155</td>
</tr>
<tr>
<td>37-622</td>
<td>26x1-3/8</td>
<td>2169</td>
</tr>
<tr>
<td>40-622</td>
<td>26x1-1/4(369)</td>
<td>2179</td>
</tr>
<tr>
<td>40-584</td>
<td>27x1-1/8</td>
<td>2188</td>
</tr>
<tr>
<td>40-584</td>
<td>27x1-1/4</td>
<td>2195</td>
</tr>
<tr>
<td>50-584</td>
<td>27x1-1/2</td>
<td>2200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETRTO</th>
<th>Tire size</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56-584</td>
<td>29x2.10</td>
<td>2220</td>
</tr>
<tr>
<td>56-584</td>
<td>29x2.25</td>
<td>2225</td>
</tr>
<tr>
<td>56-584</td>
<td>29x2.30</td>
<td>2230</td>
</tr>
<tr>
<td>56-584</td>
<td>29x2.50</td>
<td>2235</td>
</tr>
<tr>
<td>56-584</td>
<td>29x2.75</td>
<td>2240</td>
</tr>
<tr>
<td>56-584</td>
<td>29x3.00</td>
<td>2245</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETRTO</th>
<th>Tire size</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700C Tubular</td>
<td>27x1-1/4</td>
<td>2250</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2255</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-3/8</td>
<td>2260</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2265</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-3/8</td>
<td>2270</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2275</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-3/8</td>
<td>2280</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2285</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETRTO</th>
<th>Tire size</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2290</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-3/8</td>
<td>2295</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2300</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-3/8</td>
<td>2305</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2310</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-3/8</td>
<td>2315</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ETRTO</th>
<th>Tire size</th>
<th>L (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2325</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-3/8</td>
<td>2330</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-1/2</td>
<td>2335</td>
</tr>
<tr>
<td>700C Tubular</td>
<td>27x1-3/8</td>
<td>2340</td>
</tr>
</tbody>
</table>

From “Clock setting” (page 33)
From “Setting the tire circumference” (page 35)

**Pairing the sensor** (searching the sensor ID)

**Selecting the sensor**
Select the sensor to be paired.

- **SP** (Speed sensor)
- **ISC** (Speed/cadence sensor)
- **CD** (Cadence sensor)
- **HR** (Heart rate sensor)
- **PW** (Power sensor)

* When using the CATEYE speed/cadence sensor (ISC-11), select [ISC] to perform pairing.

**Selecting the sensor number**
2 sensor IDs per sensor type can be registered into the computer.

- **1** (1 sensor) ↔ **2** (2 sensor)

* The computer recognizes two bicycles automatically by pairing the sensor installed to the second bicycle while selecting 2 (second bicycle).

To add or reset the ANT+ sensor, perform pairing in the following procedure. This unit has 2 different methods for pairing.

<table>
<thead>
<tr>
<th>How to search the sensor ID</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Automatic search**         | The computer completes pairing by receiving the signal sent from the sensor.  
                              | * Generally, use this method for pairing. |
| **Manual ID number entry**  | When the sensor ID number is known, you can perform pairing by entering the number.  
                              | * Use this method for pairing, when there are two or more ANT+ sensors, such as at a race site, and automatic search cannot be done. |
In the case of automatic search
Press and hold the MODE button, then the lower display will be changed, and automatic search will be started. Send the sensor signal with the automatic search screen displayed.
* When another ANT+ sensor is nearby, send the sensor signal of the sensor to be searched, and then press and hold the MODE button. It can be easier to pair with the sensor you want.

Manual ID number entry
Press the MODE button within 3 seconds after automatic search starts, then the display will be changed to the ID number entry screen.

The ID number will appear on the display. Note the ID number for your convenience, which is specific to the sensor.

* Each sensor sends the sensor signal in response to the following operations.

<table>
<thead>
<tr>
<th>Sensor type</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Speed sensor</td>
</tr>
<tr>
<td>ISC</td>
<td>Speed/cadence sensor</td>
</tr>
<tr>
<td>CD</td>
<td>Cadence sensor</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate sensor</td>
</tr>
<tr>
<td>PW</td>
<td>Power sensor</td>
</tr>
</tbody>
</table>

Move the magnet close to the sensor zone
(at a distance of less than 3 mm)
Wear the heart rate sensor
Ride the bicycle

* The computer enters the search mode for 5 minutes after automatic search is started. Send the sensor signal in this period.
* Pressing and holding the MODE button in the search mode cancels automatic search. It is canceled automatically when the sensor signal cannot be received in the search mode.
**Night-time setting**

Set the time when the backlight lights up.

*When you do not want to turn on the backlight throughout the day, set the start time and end time to the same hour.*

**Start time**
Enter the start time when the backlight lights up.

**End time**
Enter the end time when the backlight lights off.

**Changing the settings**

You can hide undesired functions.

*It is not possible to hide elapsed time (Tm).*

*Measurement is performed for hidden functions. When a hidden function is displayed again, its measurement results will be reflected.*

**Setting function display**

**Setting the record interval**

Set the second-scale interval to record the measurement data.

*The maximum recording time / maximum time for one trip that can be recorded in the computer depends on the selected interval.*

<table>
<thead>
<tr>
<th>Record interval</th>
<th>Maximum recording time (total time of all trip data)</th>
<th>Maximum time for one trip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-S (1 second)</td>
<td>35 hours</td>
<td>12 hours</td>
</tr>
<tr>
<td>2-S (2 seconds)</td>
<td>70 hours</td>
<td>24 hours</td>
</tr>
<tr>
<td>5-S (5 seconds)</td>
<td>175 hours</td>
<td>60 hours</td>
</tr>
</tbody>
</table>

**Setting the middle display**

To “Setting the middle display” (page 39)
Setting the middle display
Select the middle display of the measurement screen.
* When the power signal is received, the middle display shows power regardless of the middle display setting.

Entering the total distance
You can enter the start value of the total distance, and add the trip distance to it. Use this function when you renew and/or reset your unit.
* Enter the total distance in integer number only.

Selecting the speed unit
Select the speed unit (km/h or m/h).
When the operation is unstable

When the computer displays incorrectly, perform the restarting operation to stabilize the operation.
* Performing the restarting operation deletes any records under measurement.
* We recommend that you perform the resetting operation to generate the trip data, before performing the restarting operation.

Restarting operation

Press the AC button on the back of the computer. All screen items will light up for 2 seconds, and the unit will change to the GPS search screen.

Data to be stored / data to be deleted

Data to be stored / deleted upon the restarting operation are as follows.

<table>
<thead>
<tr>
<th>Data to be stored</th>
<th>Data to be deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed unit</td>
<td>Data under measurement (elapsed time, trip distance, trip distance-2, average speed, maximum speed, and GPS route information)</td>
</tr>
<tr>
<td>Clock setting (time zone, previous time zone, daylight saving time, and display format)</td>
<td></td>
</tr>
<tr>
<td>Sensor ID of each sensor (speed, speed/cadence, cadence, heart rate, power)</td>
<td></td>
</tr>
<tr>
<td>Night-time setting (start time and end time)</td>
<td></td>
</tr>
<tr>
<td>Record interval</td>
<td></td>
</tr>
<tr>
<td>Function display</td>
<td></td>
</tr>
<tr>
<td>Middle display</td>
<td></td>
</tr>
<tr>
<td>Total distance (*1)</td>
<td></td>
</tr>
<tr>
<td>Trip data generated upon the resetting operation</td>
<td></td>
</tr>
</tbody>
</table>

*1 Once you perform the restarting operation before the resetting operation after measurement, the distance is not added to the total distance.
## Troubleshooting

The following troubles are not due to failure.
See also “FAQ” in CATEYE Atlas™ (web) (http://www.cateyeatlas.com/qa/).

### Troubles related to the computer

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Check Items</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>When the power is turned on, [ \square ] (battery icon) flashes, and then no display appears.</strong></td>
<td>–</td>
<td>Remaining battery capacity is nearly zero. Charge the computer according to the procedure in “How to charge” (page 7).</td>
</tr>
<tr>
<td><strong>The power is turned off while riding.</strong></td>
<td>–</td>
<td>The power is automatically turned off in 10 minutes if no GPS signal or speed signal is received. (Auto power off)</td>
</tr>
<tr>
<td><strong>No display appears when pressing and holding the [ \circ ] button for 2 seconds.</strong></td>
<td>Is the battery for the computer empty?</td>
<td>Charge the computer according to the procedure in “How to charge” (page 7).</td>
</tr>
<tr>
<td><strong>Incorrect data appear.</strong></td>
<td>–</td>
<td>Follow the procedure in “When the operation is unstable” (page 40).</td>
</tr>
<tr>
<td><strong>Measurement cannot be performed.</strong> (When using an ANT+ sensor capable of speed measurement)</td>
<td>[ \bar{S} ] or [ \bar{C} ] does not flash</td>
<td>Have you paired the computer with the sensor? Perform pairing (page 36).</td>
</tr>
<tr>
<td></td>
<td>Is the condition for mounting the sensor cleared?</td>
<td>Mount the sensor correctly by referring to the instruction manual supplied with your sensor.</td>
</tr>
<tr>
<td></td>
<td>Is the battery for the sensor used up?</td>
<td>Replace with new batteries.</td>
</tr>
<tr>
<td></td>
<td><strong>STOP is displayed</strong></td>
<td>Measurement is paused. Press the [ \circ ] button to start measurement. For details, see “Starting/Stopping measurement” (page 16).</td>
</tr>
<tr>
<td><strong>Measurement cannot be performed.</strong> (When not using an ANT+ sensor capable of speed measurement)</td>
<td>[ \bar{S} ] or [ \bar{C} ] flashes</td>
<td>Is it immediately after turning on the power? It may take about 2 to 3 minutes to acquire the positional information after receiving GPS signal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the location or weather suitable for receiving the GPS signal? GPS signal may not be received, thus the unit may stop measurement or may not display appropriate measurements in the following locations or environments.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In a tunnel, underground and building, between high-rise buildings, under an elevated structure and arcade, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In bad weather (snow, rain, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Near a high-voltage line or a mobile telephone relay station.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The computer display does not face upward.</td>
</tr>
<tr>
<td></td>
<td><strong>STOP is displayed</strong></td>
<td>To receive GPS signal effectively, install the unit so that the computer display faces to the sky.</td>
</tr>
</tbody>
</table>

For details, see “Troubleshooting” (page 40).
<table>
<thead>
<tr>
<th>Trouble</th>
<th>Check Items</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>The measurement data is wrong.</strong></td>
<td>If not using an ANT+ sensor capable of speed measurement, the unit uses GPS for measurement, so depending on reception conditions, measurement may be interrupted or indicate values other than actual values.</td>
<td></td>
</tr>
<tr>
<td><strong>MEM FULL flashes.</strong></td>
<td>Connect the computer to your PC to upload the trip data (page 22). All the trip data transferred to your PC will be deleted from the computer, and new data will be able to be recorded.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does the maximum recording time or the number of trips exceed the upper limit?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Does the maximum time for one trip exceed the upper limit?</td>
<td></td>
</tr>
<tr>
<td><strong>The backlight does not light up even at the preset hour.</strong></td>
<td>The backlight does not light up when the start time and end time are set to the same hour. For information on how to set the start/end time, see “Night-time setting” (when using CATEYE Sync™: page 30, when using the computer alone: page 38).</td>
<td></td>
</tr>
<tr>
<td><strong>The backlight lights up during the daytime.</strong></td>
<td>For information on how to set the start/end time, see “Night-time setting” (when using CATEYE Sync™: page 30, when using the computer alone: page 38).</td>
<td></td>
</tr>
</tbody>
</table>

### Troubles related to the ANT+ sensor

Refer to the following information when the optional or commercial ANT+ sensor is used.

* Pairing with the computer is required in order to use the ANT+ sensor. For details, see “Pairing the sensor” (page 36).

* When a commercial ANT+ sensor is used, also refer to the instruction manual supplied with your sensor.

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Check Items</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The heart rate cannot be measured (=value does not flash).</td>
<td>Did you perform pairing with the heart rate sensor?</td>
<td>Perform pairing (page 36).</td>
</tr>
<tr>
<td></td>
<td>Is the electrode pad detached from your body?</td>
<td>Wear the electrode pad appropriately so that it is in close contact with the body.</td>
</tr>
<tr>
<td></td>
<td>Is your skin dry?</td>
<td>Moisten the electrode pad a little.</td>
</tr>
<tr>
<td></td>
<td>Is the electrode pad overly worn and damaged after long use?</td>
<td>Replace with a new one.</td>
</tr>
<tr>
<td></td>
<td>Is the battery for the heart rate sensor used up?</td>
<td>Replace with new batteries.</td>
</tr>
<tr>
<td>The heart rate measurement is not constant (measurement is performed at times, or reset to 0).</td>
<td>Is the heart rate sensor attached correctly?</td>
<td>Attach the heart rate sensor in the correct position by referring to the relevant instruction manual.</td>
</tr>
<tr>
<td>The power cannot be measured (=P does not flash).</td>
<td>Did you perform pairing with the power sensor used?</td>
<td>Perform pairing (page 36).</td>
</tr>
<tr>
<td></td>
<td>Is the condition for mounting the power sensor cleared?</td>
<td>Mount the power sensor correctly by referring to the relevant instruction manual.</td>
</tr>
<tr>
<td></td>
<td>Is the battery for the power sensor used up?</td>
<td>Replace with new batteries.</td>
</tr>
</tbody>
</table>
### Maintenance

To clean the computer or accessories, use diluted neutral detergent on a soft cloth, and wipe it off with a dry cloth.

### How to dispose the computer

Remove the screws (x 6) on the back of the computer using a Phillips screwdriver, remove the rechargeable battery built-in, and then dispose the computer.

⚠️ **Caution:**
- The used battery should be disposed of properly according to local regulations.
- Do not disassemble the unit except when you dispose it.
- Be sure to use up the rechargeable batteries.
- Keep the removed batteries out of baby’s reach. If a child swallows a battery, consult a doctor immediately.

<table>
<thead>
<tr>
<th>Trouble</th>
<th>Check Items</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The power display is not accurate.</td>
<td>–</td>
<td>Perform calibration of the power sensor (page 19). * Continuous use of the power sensor may cause a slight drift in unloaded condition. Calibrate it periodically to correct the drift.</td>
</tr>
</tbody>
</table>
How to install the speed/cadence sensor (ISC-11)

1 Temporarily secure the speed sensor

1. Loosen the sensor screw on the speed sensor using a Phillips screwdriver to check that the sensor arm moves. Do not completely remove the sensor screw.

2. Attach the sensor rubber pad to the speed sensor, locate the speed sensor on the left chain stay as shown in the figure above, and temporarily secure it with the nylon ties.

**Caution:** Do not tighten the nylon ties completely at this stage. Once a nylon tie is tightened, it cannot be pulled out.

Optional accessories

Standard accessories

- **1602194** Bracket kit
- **1600280N** Bracket band
- **1602193** Bracket
- **1603790** Cradle (IF-CC01)

Optional accessories

- **1603750** Speed sensor (speed/cadence) (ISC-11)
- **1604100** Out-front bracket
- **1602980** Nylon tie bracket
- **1603760** Heart rate sensor (HR-11)
- **1603595** HR Strap

1602980
Nylon tie bracket

Click the button, then a browser will open and a video will be played back back.

Watch video (YouTube)
**Introduction**

**How to install the unit on your bicycle**

**Setting up the computer**

**How to use the computer**

**Setup of your PC**

**Uploading the measurement data**

**Changing the computer configuration**

**Others**

---

### Others

**How to install the heart rate sensor (HR-11)**

Heart rate is measured when the heart rate sensor is worn on the chest.

⚠️ **Warning!!!**: This product must NOT be used by those who have a pacemaker.

- To avoid measurement errors, it is recommended to moisten the electrode pads with water.
- If your skin is sensitive, the electrode pad may be moistened with water and worn on a thin undershirt.
- Chest hair may interfere with the measurement.

Watch video (YouTube)

Click the button, then a browser will open and a video will be played back.

---

### 2 Temporarily secure the magnet

1. Temporarily secure the cadence magnet inside the crank with nylon ties, so that it faces the sensor zone on the **CADENCE** side.

2. Turn the sensor arm, and temporarily secure the wheel magnet to the spoke that faces the sensor zone on the **SPEED** side.

   - When the speed sensor is not positioned appropriately in respect to the two magnets (of **CADENCE** and **SPEED**), move the speed sensor back and forth so that it is positioned properly. After you move the speed sensor, adjust the position so that the two magnets face the relevant sensor zone.

---

### 3 Adjust the distance to the magnet

1. Tilt the speed sensor so that the distance between the cadence magnet and the **CADENCE** side of the speed sensor is about 3 mm, and firmly secure it with the nylon ties.

2. Turn and adjust the sensor arm so that the distance between the wheel magnet and the sensor arm is about 3 mm, and firmly tighten the sensor screw.

---

### 4 Securing various parts

Firmly tighten the nylon ties, sensor screw and magnet of the speed sensor, and check for any loosening.

- For steel axle pedals, the cadence magnet can be magnetically secured on the pedal axle. Make sure to remove the double-sided tape from the magnet when doing this.

Cut extra length of the nylon tie with scissors.

---

### 1 Attach the heart rate sensor to the HR strap.

Push it in until it clicks.

---

### 2 Insert the HR strap hook to the other end of the strap.

Wear the heart rate sensor with the HR strap, and adjust the length of the HR strap to fit your chest size (under bust). Fastening the strap too tightly may cause discomfort.

* Wear the heart rate sensor so that the top of the sensor faces up.
* Ensure that the electrode pad is in direct contact with the body.
* When your skin is dry, or wearing the heart rate sensor on top of your undershirt may produce measurement errors. To avoid errors, moisten the electrode pad.
## Specification

<table>
<thead>
<tr>
<th>Measurement function</th>
<th>Upper display</th>
<th>Middle display</th>
<th>Lower display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current speed</td>
<td>0.0 (3.0) – 105.9 km/h [0.0 (2.0) – 65.9 m/h]</td>
<td>0.0 – 105.9 km/h [0.0 – 65.9 m/h]</td>
<td>0:00’00” – 9:59’59”</td>
</tr>
<tr>
<td><strong>AV</strong> Average Speed</td>
<td>0.0 – 105.9 km/h [0.0 – 65.9 m/h]</td>
<td></td>
<td>Heart rate (<strong>1</strong>) 0 (30) – 199 bpm</td>
</tr>
<tr>
<td><strong>MAX</strong> Maximum Speed</td>
<td>0.0 (3.0) – 105.9 km/h [0.0 (2.0) – 65.9 m/h]</td>
<td></td>
<td>Cadence (<strong>1</strong>) 0 (20) – 199 rpm</td>
</tr>
<tr>
<td><strong>Clock</strong></td>
<td>0:00 – 23:59 [AM1:00 – PM12:59] (Both 12 and 24-hour modes can be selected) (Automatic adjustment using GPS)</td>
<td></td>
<td>Power balance (<strong>2</strong>) Left : 0 – 100 % Right : 0 – 100 %</td>
</tr>
<tr>
<td>Altitude</td>
<td>-500 – 9999 m [-1640 – 29600 ft]</td>
<td></td>
<td><strong>Dst</strong> Trip Distance 0.00 – 999.99 km [mile]</td>
</tr>
<tr>
<td>Current power (<strong>1</strong>)</td>
<td>0 – 9999 watt</td>
<td></td>
<td><strong>Dst 2</strong> Trip Distance-2 0.00 – 999.99 / 1000.0 – 9999.9 km [mile]</td>
</tr>
<tr>
<td><strong>AV</strong> Average power (<strong>1</strong>)</td>
<td>0 – 9999 watt</td>
<td></td>
<td><strong>AV</strong> Average heart rate (<strong>1</strong>) 0 – 199 bpm</td>
</tr>
<tr>
<td><strong>MAX</strong> Maximum power (<strong>1</strong>)</td>
<td>0 – 9999 watt</td>
<td></td>
<td><strong>MAX</strong> Average cadence (<strong>1</strong>) 0 – 199 rpm</td>
</tr>
<tr>
<td><strong>MAX</strong> Maximum Speed</td>
<td>0.0 (3.0) – 105.9 km/h [0.0 (2.0) – 65.9 m/h]</td>
<td></td>
<td><strong>MAX</strong> Maximum heart rate (<strong>1</strong>) 0 – 199 bpm</td>
</tr>
<tr>
<td><strong>MAX</strong> Maximum cadence (<strong>1</strong>)</td>
<td>0 – 199 rpm</td>
<td></td>
<td><strong>ALT</strong> Altitude -500 – 9999 m [-1640 – 29600 ft]</td>
</tr>
<tr>
<td><strong>Odo</strong> Total Distance</td>
<td>0.0 – 9999.9 / 10000 – 99999 km [mile]</td>
<td></td>
<td><strong>Clock</strong> 0:00 – 23:59 [AM1:00 – PM12:59] (Both 12 and 24-hour modes can be selected) (Automatic adjustment using GPS)</td>
</tr>
</tbody>
</table>

*1: The optional or commercial ANT+ sensor is required for measurement.

*2: Requires separate left and right ANT+ power sensors.
Limited warranty

2-year Warranty: Computer only
(Deterioration of the battery is excluded)

CatEye cycle computers are warranted to be free of defects from materials and workmanship for a period of two years from original purchase. If the product fails to work due to normal use, CatEye will repair or replace the defect at no charge. Service must be performed by CatEye or an authorized retailer. To return the product, pack it carefully and enclose the warranty certificate (proof of purchase) with instruction for repair. Please write or type your name and address clearly on the warranty certificate. Insurance, handling and transportation charges to CatEye shall be borne by person desiring service. For UK and REPUBLIC OF IRELAND consumers, please return to the place of purchase. This does not affect your statutory rights.

Please register your CatEye product on the website.

CAT EYE CO., LTD.
2-8-25, Kuwazu, Higashi Sumiyoshi-ku, Osaka 546-0041 Japan
Attn: CATEYE Customer Service Section
Phone : (06)6719-6863
Fax : (06)6719-6033
E-mail : support@cateye.co.jp
URL : http://www.cateye.com

[For US Customers]
CATEYE AMERICA, INC.
2825 Wilderness Place Suite 1200, Boulder CO 80301-5494 USA
Phone : 303.443.4595
Toll Free : 800.5.CATEYE
Fax : 303.473.0006
E-mail : service@cateye.com

Battery: Lithium-ion rechargeable battery
Charge and communication: USB cradle
Standard charging time: Approx. 5 hours (USB2.0)
Standard operating time: Approx. 10 hours
Recharge/discharge number of times: About 300 times (until the rated capacity drops to 70%)
Controller: Microcomputer (crystal controlled oscillator)
Display: Liquid crystal display (EL backlight: Lights up always during the night-time)
Sensor signal transmission system: ANT+
Working temperature: 0 °F - 104 °F (0 °C - 40 °C)
This product will not display appropriately when exceeding the Working Temperature range. Slow response or black LCD at lower or higher temperature may happen respectively.
Dimensions/weight: 2-23/32” x 1-49/64” x 7/8” (69 x 45 x 22.4 mm) / 1.76 oz (50 g)

* The specifications and design are subject to change without notice.